FB 10 - Institut für Mathematik
AG Algorithmische Algebra und Diskrete Mathematik
Prof. Dr. Wolfram Koepf

INSTITUTSKOLLOQUIUM

Representation Theory of Reflection Groups

Referent: Dr. Hery Randriamaro (Madagaskar)
Termin: Montag, 24. Januar 2022, 17:15 Uhr
Ort:
Raum 1409, Heinrich-Plett-Str. 40, AVZ, Kassel-Oberzwehren

Abstract

:

It all started in 1896, when Dedekind sent a letter to Frobenius. He wrote about the group determinant, explained how it factors in the abelian case, and suggested him to think about the nonabelian case. It is the question of factoring the group determinant of an arbitrary group that gave rise to representation theory by Frobenius. This latter initially developed the representation of groups essentially based on the character groups. But over time, the theory has provided groups with concrete descriptions in terms of linear algebra. Namely, each element of a group is represented by a matrix in such a way that the group operation is matrix multiplication. The most studied representation until now is that of reflection groups. A reflection is a map on a structured object preserving its structure. These groups arise in a multitude of ways in mathematics. Moreover, many groups are isomorphic to some reflection groups. Classical examples are the Coxeter groups, the symmetry groups of regular polytopes, and the symmetric groups. These latter are particularly important as the Cayley theorem states that every group is isomorphic to a subgroup of a symmetric group. And reflection groups may be regarded as the foundation of other algebraic structures. Like the descent algebras which are subalgebras of the group algebras of reflection groups, and the Hecke algebras which are deformations of the group algebras of reflection groups. Representation theory naturally extends to representation theory of algebras since every group can be extended to group algebras. The presentation is essentially divided into three parts: the origin of representation theory, representation theory of reflection groups and related algebras, and applications of representations of groups and related algebras. Besides, it is good to warn the experts on the subject that the presentation is aimed to be instructive, in the sense that enough time is planned to be spent on basic definitions.

Representation Theory of Reflection Groups

Hery Randriamaro

Universität Kassel
Institutskolloquium - January 24, 2022

Origin

Take n variables x_{0}, \ldots, x_{n-1}. Catalan introduced in 1846 the circulant of order n

$$
c_{n}=\left|\begin{array}{cccc}
x_{0} & x_{n-1} & \cdots & x_{1} \\
x_{1} & x_{0} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1} & x_{n-2} & \cdots & x_{0}
\end{array}\right|
$$

Origin

Take n variables x_{0}, \ldots, x_{n-1}. Catalan introduced in 1846 the circulant of order n

$$
c_{n}=\left|\begin{array}{cccc}
x_{0} & x_{n-1} & \cdots & x_{1} \\
x_{1} & x_{0} & \cdots & x_{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n-1} & x_{n-2} & \cdots & x_{0}
\end{array}\right| .
$$

For a finite group G, form a set of variables $\left\{x_{g}\right\}_{g \in G}$. As generalization of the circulant, Dedekind considered the group determinant

$$
\Theta(G):=\left|x_{g h^{-1}}\right|_{g, h \in G} .
$$

Origin

The character group \hat{G} of an abelian group G is the group of homomorphisms from G to \mathbb{C}^{*}. Dedekind proved in 1880 that

$$
\Theta(G)=\prod_{\chi \in \hat{G}}\left(\sum_{g \in G} \chi(g) x_{g}\right) .
$$

Origin

The character group \hat{G} of an abelian group G is the group of homomorphisms from G to \mathbb{C}^{*}. Dedekind proved in 1880 that

$$
\Theta(G)=\prod_{\chi \in \hat{G}}\left(\sum_{g \in G} \chi(g) x_{g}\right) .
$$

The circulant of order n is $c_{n}=\Theta(\mathbb{Z} / n \mathbb{Z})$, and $\widehat{\mathbb{Z} / n \mathbb{Z}}$ is composed by the homomorphisms

$$
h_{k}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}^{*}, \bar{j} \mapsto \exp \frac{2 j k \pi i}{n} \quad \text { with } \quad k \in\{0,1, \ldots, n-1\}
$$

Origin

The character group \hat{G} of an abelian group G is the group of homomorphisms from G to \mathbb{C}^{*}. Dedekind proved in 1880 that

$$
\Theta(G)=\prod_{\chi \in \hat{G}}\left(\sum_{g \in G} \chi(g) x_{g}\right) .
$$

The circulant of order n is $c_{n}=\Theta(\mathbb{Z} / n \mathbb{Z})$, and $\widehat{\mathbb{Z} / n \mathbb{Z}}$ is composed by the homomorphisms

$$
h_{k}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{C}^{*}, \bar{j} \mapsto \exp \frac{2 j k \pi i}{n} \quad \text { with } \quad k \in\{0,1, \ldots, n-1\}
$$

Therefore

$$
c_{n}=\prod_{k=0}^{n-1} \sum_{j=0}^{n-1} x_{i} \exp \frac{2 j k \pi i}{n}
$$

Origin

Then, he became interested in factoring $\Theta(G)$, if G is a nonabelian finite group. He discovered that, when G is nonabelian, some of the irreducible factors of $\Theta(G)$ may be nonlinear.

Origin

Then, he became interested in factoring $\Theta(G)$, if G is a nonabelian finite group. He discovered that, when G is nonabelian, some of the irreducible factors of $\Theta(G)$ may be nonlinear.

Let us enumerate the elements of \mathfrak{S}_{3} as Dedekind did:

$$
\mathbf{1}=(1), \mathbf{2}=(123), \mathbf{3}=(132), \mathbf{4}=(23), \mathbf{5}=(13), \mathbf{6}=(12) .
$$

He obtained $\Theta\left(\mathfrak{S}_{3}\right)=\Phi_{1} \Phi_{2} \Phi_{3}^{2}$ with

$$
\begin{aligned}
\Phi_{1}= & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \\
\Phi_{2}= & x_{1}+x_{2}+x_{3}-x_{4}-x_{5}-x_{6}, \\
\Phi_{3}= & x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-x_{5}^{2}-x_{6}^{2}-x_{1} x_{2}-x_{1} x_{3}-x_{2} x_{3} \\
& +x_{4} x_{5}+x_{4} x_{6}+x_{5} x_{6} .
\end{aligned}
$$

Origin

In 1896, Dedekind wrote a letter to Frobenius in which he mentioned the group determinant $\Theta(G)$, explained how it factors in the abelian case, and suggested him to think about the nonabelian case. It is the question of factoring $\Theta(G)$ for an arbitrary finite group G that gave rise to representation theory by Frobenius.

Representation of Groups

The theory provides groups with concrete descriptions in terms of linear algebra. Let G be a group, V a vector space over a field \mathbb{K} of characteristic 0 , and GL(V) the general linear group on V. A representation of G on V is a group homomorphism

$$
\mathscr{X}_{V}: G \rightarrow \mathrm{GL}(V)
$$

and the vector space V is called a G-module.

Representation of Groups

The action of \mathfrak{S}_{n} on $V=\left\{c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n} \mid c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$ defined, for every $\sigma \in \mathfrak{S}_{n}$, by

$$
\sigma\left(c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n}\right)=c_{1} \sigma(\mathbf{1})+\cdots+c_{n} \sigma(\mathbf{n})
$$

is a representation. We use the basis $\{\mathbf{1}, \ldots, \mathbf{n}\}$ to compute the images of the representation.

Representation of Groups

The action of \mathfrak{S}_{n} on $V=\left\{c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n} \mid c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$ defined, for every $\sigma \in \mathfrak{S}_{n}$, by

$$
\sigma\left(c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n}\right)=c_{1} \sigma(\mathbf{1})+\cdots+c_{n} \sigma(\mathbf{n})
$$

is a representation. We use the basis $\{\mathbf{1}, \ldots, \mathbf{n}\}$ to compute the images of the representation. For $\sigma=(12)$ for example, we have

$$
\sigma(\mathbf{1})=\mathbf{2}, \quad \sigma(\mathbf{2})=\mathbf{1}, \quad \sigma(\mathbf{k})=\mathbf{k} \text { if } \mathbf{k} \in\{\mathbf{3}, \ldots, \mathbf{n}\}
$$

and so

$$
\mathscr{X}_{V}(\sigma)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Representation of Algebras

In the same way that a group G can be extended to a group algebra

$$
\mathbb{K}[G]=\left(\sum_{g \in G} x_{g} g \mid x_{g} \in \mathbb{K}\right)
$$

a group representation can be extended to an algebra representation.

Representation of Algebras

In the same way that a group G can be extended to a group algebra

$$
\mathbb{K}[G]=\left(\sum_{g \in G} x_{g} g \mid x_{g} \in \mathbb{K}\right)
$$

a group representation can be extended to an algebra representation.
Let A be a finitely generated algebra and V a vector space, both over a field \mathbb{K} of characteristic 0 , and $\operatorname{End}(V)$ the algebra of linear transformations in V. A representation of A on V is an algebra homomorphism

$$
\mathscr{X}_{V}: A \rightarrow \operatorname{End}(V)
$$

Representation of Algebras

Consider the action of \mathfrak{S}_{n} on $V=\left\{c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n} \mid c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$, and the permutation $\tau=(123)$. We have

$$
\tau(\mathbf{1})=\mathbf{2}, \quad \tau(\mathbf{2})=\mathbf{3}, \quad \tau(\mathbf{3})=\mathbf{1}, \quad \tau(\mathbf{k})=\mathbf{k} \text { if } \mathbf{k} \in\{\mathbf{4}, \ldots, \mathbf{n}\} .
$$

Representation of Algebras

Consider the action of \mathfrak{S}_{n} on $V=\left\{c_{1} \mathbf{1}+\cdots+c_{n} \mathbf{n} \mid c_{1}, \ldots, c_{n} \in \mathbb{R}\right\}$, and the permutation $\tau=(123)$. We have

$$
\tau(\mathbf{1})=\mathbf{2}, \quad \tau(\mathbf{2})=\mathbf{3}, \quad \tau(\mathbf{3})=\mathbf{1}, \quad \tau(\mathbf{k})=\mathbf{k} \text { if } \mathbf{k} \in\{\mathbf{4}, \ldots, \mathbf{n}\} .
$$

So, for $a, b \in \mathbb{C}$, we have

$$
\mathscr{X}_{V}(a \sigma+b \tau)=a \mathscr{X}_{v}(\sigma)+b \mathscr{X}_{v}(\tau)=\left(\begin{array}{ccccc}
0 & a+b & 0 & \cdots & 0 \\
a & 0 & b & \cdots & 0 \\
b & 0 & a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

Representation of Algebras

The most important representations of a group G and its group algebra $\mathbb{K}[G]$ is the regular representation. It represents the action of G or $\mathbb{K}[G]$ by left multiplication on $\mathbb{K}[G]$ itself. A basis of $\mathbb{K}[G]$ as G-module is G.

Representation of Algebras

The most important representations of a group G and its group algebra $\mathbb{K}[G]$ is the regular representation. It represents the action of G or $\mathbb{K}[G]$ by left multiplication on $\mathbb{K}[G]$ itself. A basis of $\mathbb{K}[G]$ as G-module is G.

The group determinant of a group G defined by Dedekind is the determinant of the regular representation of the element $\sum_{g \in G} x_{g} g \in \mathbb{K}[G]$.

Representation of Algebras

The most important representations of a group G and its group algebra $\mathbb{K}[G]$ is the regular representation. It represents the action of G or $\mathbb{K}[G]$ by left multiplication on $\mathbb{K}[G]$ itself. A basis of $\mathbb{K}[G]$ as G-module is G.

The group determinant of a group G defined by Dedekind is the determinant of the regular representation of the element $\sum_{g \in G} x_{g} g \in \mathbb{K}[G]$.
In other words,

$$
\Theta(G)=\operatorname{det} \mathscr{X}_{\mathbb{K}[G]}\left(\sum_{g \in G} x_{g} g\right) .
$$

Representation Reduction

Let G be a finite group, and V a nonzero G-module. A representation on V is said to be irreducible if V contains no subspace U such that $\{0\} \varsubsetneqq U \varsubsetneqq V$ and U is a G-module.

Representation Reduction

Let G be a finite group, and V a nonzero G-module. A representation on V is said to be irreducible if V contains no subspace U such that $\{0\} \varsubsetneqq U \varsubsetneqq V$ and U is a G-module.

The theorem of Maschke states that

$$
V=\bigoplus_{i=1}^{k} V_{i}
$$

where each subspace V_{i} of V is an irreducible G-module.

Representation Reduction

Let G be a finite group, and V a nonzero G-module. A representation on V is said to be irreducible if V contains no subspace U such that $\{0\} \varsubsetneqq U \varsubsetneqq V$ and U is a G-module.

The theorem of Maschke states that

$$
V=\bigoplus_{i=1}^{k} V_{i}
$$

where each subspace V_{i} of V is an irreducible G-module.
There is a fixed $\operatorname{dim} V \times \operatorname{dim} V$ matrix T such that, for every $g \in G$,

$$
T \mathscr{X}_{V}(g) T^{-1}=\bigoplus_{i=1}^{k} \mathscr{X}_{V_{i}}(g)
$$

Representation Reduction

Let G be a finite group, and denote $\mathrm{Cl}(G)$ its set of conjugacy classes:

Representation Reduction

Let G be a finite group, and denote $\mathrm{Cl}(G)$ its set of conjugacy classes:

- G has $\# \mathrm{Cl}(G)$ different irreducible representations on G-modules V_{i} up to isomorphism such that

$$
\mathbb{K}[G]=\bigoplus_{i=1}^{\# \mathrm{Cl}(G)} m_{i} V_{i} \quad \text { with } \quad m_{i} V_{i}=\overbrace{V_{i} \oplus \cdots \oplus V_{i}}^{m_{i} \text { times }}
$$

Representation Reduction

Let G be a finite group, and denote $\mathrm{Cl}(G)$ its set of conjugacy classes:

- G has $\# \mathrm{Cl}(G)$ different irreducible representations on G-modules V_{i} up to isomorphism such that

$$
\mathbb{K}[G]=\bigoplus_{i=1}^{\# \mathrm{Cl}(G)} m_{i} V_{i} \quad \text { with } \quad m_{i} V_{i}=\overbrace{V_{i} \oplus \cdots \oplus V_{i}}^{m_{i} \text { times }}
$$

- $m_{i}=\operatorname{dim} V_{i}$ and $\sum_{i=1}^{\# \operatorname{Cl}(G)}\left(\operatorname{dim} V_{i}\right)^{2}=\# G$,

Representation Reduction

Let G be a finite group, and denote $\mathrm{Cl}(G)$ its set of conjugacy classes:

- G has $\# \mathrm{Cl}(G)$ different irreducible representations on G-modules V_{i} up to isomorphism such that

$$
\mathbb{K}[G]=\bigoplus_{i=1}^{\# \mathrm{Cl}(G)} m_{i} V_{i} \quad \text { with } \quad m_{i} V_{i}=\overbrace{V_{i} \oplus \cdots \oplus V_{i}}^{m_{i} \text { times }}
$$

- $m_{i}=\operatorname{dim} V_{i}$ and $\sum_{i=1}^{\# \operatorname{Cl}(G)}\left(\operatorname{dim} V_{i}\right)^{2}=\# G$,
- there is a fixed $\# G \times \# G$ matrix T such that, for all $a \in \mathbb{K}[G]$,

$$
T \mathscr{X}_{\mathbb{K}[G]}(a) T^{-1}=\bigoplus_{i=1}^{\# \mathrm{Cl}(G)} \operatorname{dim} V_{i} \mathscr{X}_{V_{i}}(a)
$$

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

- the symmetry groups of regular polytopes,

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

- the symmetry groups of regular polytopes,
- the braid groups in knot theory,

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

- the symmetry groups of regular polytopes,
- the braid groups in knot theory,
- the symmetric groups.

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

- the symmetry groups of regular polytopes,
- the braid groups in knot theory,
- the symmetric groups.

The theorem of Cayley states that every finite group is isomorphic to a subgroup of a symmetric group.

Real Reflection Groups

Many groups are isomorphic to some reflection groups:

- the symmetry groups of regular polytopes,
- the braid groups in knot theory,
- the symmetric groups.

The theorem of Cayley states that every finite group is isomorphic to a subgroup of a symmetric group.

Reflection groups are the foundation of other algebraic structures such as descent algebras and Hecke algebras.

Real Reflection Groups

Endow \mathbb{R}^{n} with the usual unitary inner product $\langle\cdot,\rangle:. \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. The reflection $s_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ across the hyperplane u^{\perp} in \mathbb{R}^{n} is defined by

$$
s_{u}(x):=x-2 \frac{\langle x, u\rangle}{\langle u, u\rangle} u .
$$

A reflection group is a finite group generated by reflections in \mathbb{R}^{n}.

Real Reflection Groups

Endow \mathbb{R}^{n} with the usual unitary inner product $\langle\cdot,\rangle:. \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. The reflection $s_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ across the hyperplane u^{\perp} in \mathbb{R}^{n} is defined by

$$
s_{u}(x):=x-2 \frac{\langle x, u\rangle}{\langle u, u\rangle} u .
$$

A reflection group is a finite group generated by reflections in \mathbb{R}^{n}.
Let W be a reflection group. One can fix a minimal set S of reflections in W such that $\langle S\rangle=W$. The pair (W, S) is called a Coxeter system.

Real Reflection Groups

Endow \mathbb{R}^{n} with the usual unitary inner product $\langle.,\rangle:. \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. The reflection $s_{u}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ across the hyperplane u^{\perp} in \mathbb{R}^{n} is defined by

$$
s_{u}(x):=x-2 \frac{\langle x, u\rangle}{\langle u, u\rangle} u
$$

A reflection group is a finite group generated by reflections in \mathbb{R}^{n}.
Let W be a reflection group. One can fix a minimal set S of reflections in W such that $\langle S\rangle=W$. The pair (W, S) is called a Coxeter system.
The matrix $\mathrm{M}_{W}=\left(m_{s t}\right)_{s, t \in S}$ such that $m_{s t}$ is the order of $s t \in W$ is the Coxeter matrix of W.

Real Reflection Groups

Let W be a reflection group, and V a nontrivial subspace of \mathbb{R}^{n} such that $w(V) \subseteq V$ for every $w \in W$. The reflection group W is said to be irreducible on V if V contains no subspace U such that

$$
\{0\} \varsubsetneqq U \varsubsetneqq V \quad \text { and } \quad \forall w \in W, w(U) \subseteq U
$$

Real Reflection Groups

Let W be a reflection group, and V a nontrivial subspace of \mathbb{R}^{n} such that $w(V) \subseteq V$ for every $w \in W$. The reflection group W is said to be irreducible on V if V contains no subspace U such that

$$
\{0\} \varsubsetneqq U \varsubsetneqq V \quad \text { and } \quad \forall w \in W, w(U) \subseteq U
$$

Coxeter proved in 1934 that, up to isomorphism, the irreducible reflection groups are

- the classical infinite reflection groups $A_{n}(n \geq 1), B_{n}(n \geq 2)$, $D_{n}(n \geq 4)$,

Real Reflection Groups

Let W be a reflection group, and V a nontrivial subspace of \mathbb{R}^{n} such that $w(V) \subseteq V$ for every $w \in W$. The reflection group W is said to be irreducible on V if V contains no subspace U such that

$$
\{0\} \varsubsetneqq U \varsubsetneqq V \quad \text { and } \quad \forall w \in W, w(U) \subseteq U
$$

Coxeter proved in 1934 that, up to isomorphism, the irreducible reflection groups are

- the classical infinite reflection groups $A_{n}(n \geq 1), B_{n}(n \geq 2)$, $D_{n}(n \geq 4)$,
- the exceptional reflection groups $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$,

Real Reflection Groups

Let W be a reflection group, and V a nontrivial subspace of \mathbb{R}^{n} such that $w(V) \subseteq V$ for every $w \in W$. The reflection group W is said to be irreducible on V if V contains no subspace U such that

$$
\{0\} \varsubsetneqq U \varsubsetneqq V \quad \text { and } \quad \forall w \in W, w(U) \subseteq U
$$

Coxeter proved in 1934 that, up to isomorphism, the irreducible reflection groups are

- the classical infinite reflection groups $A_{n}(n \geq 1), B_{n}(n \geq 2)$, $D_{n}(n \geq 4)$,
- the exceptional reflection groups $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$,
- the non-crystallographic reflection groups H_{3}, H_{4},

$$
I_{2}(m)(m \in \mathbb{N} \backslash\{1,2,3,4,6\})
$$

Specht Module

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$. The Ferrers diagram of shape λ is an array of n dots having / left-justified rows with row i containing λ_{i} dots.

Specht Module

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$. The Ferrers diagram of shape λ is an array of n dots having / left-justified rows with row i containing λ_{i} dots.

The partition $(3,1)$ of 4 has Ferrers diagram

Specht Module

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$. The Ferrers diagram of shape λ is an array of n dots having / left-justified rows with row i containing λ_{i} dots.

The partition $(3,1)$ of 4 has Ferrers diagram

A Young tableau of shape λ is an array obtained by replacing the dots of the Ferrers diagram of shape λ with the numbers $1,2, \ldots, n$ bijectively.

Specht Module

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$. The Ferrers diagram of shape λ is an array of n dots having / left-justified rows with row i containing λ_{i} dots.

The partition $(3,1)$ of 4 has Ferrers diagram

A Young tableau of shape λ is an array obtained by replacing the dots of the Ferrers diagram of shape λ with the numbers $1,2, \ldots, n$ bijectively.

Specht Module

Two tableaux of shape λ are row equivalent if their corresponding rows contain the same elements. A tabloid is a class of the row equivalence.

Specht Module

Two tableaux of shape λ are row equivalent if their corresponding rows contain the same elements. A tabloid is a class of the row equivalence.

is a tabloid of shape λ.

Specht Module

Suppose that the tableau t has columns $C_{1}, C_{2}, \ldots, C_{k}$, and let

Specht Module

Suppose that the tableau t has columns $C_{1}, C_{2}, \ldots, C_{k}$, and let

$$
\begin{aligned}
C_{t} & =\mathfrak{S}_{C_{1}} \times \mathfrak{S}_{C_{2}} \times \ldots \mathfrak{S}_{C_{k}} \\
\kappa_{t} & =\sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) \sigma .
\end{aligned}
$$

Specht Module

Suppose that the tableau t has columns $C_{1}, C_{2}, \ldots, C_{k}$, and let

$$
\begin{aligned}
& C_{t}=\mathfrak{S}_{C_{1}} \times \mathfrak{S}_{C_{2}} \times \ldots \mathfrak{S}_{C_{k}}, \\
& \kappa_{t}=\sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) \sigma .
\end{aligned}
$$

The polytabloid associated to t is $e_{t}=\kappa_{t} \bar{t}$.

Specht Module

Suppose that the tableau t has columns $C_{1}, C_{2}, \ldots, C_{k}$, and let

$$
\begin{aligned}
C_{t} & =\mathfrak{S}_{C_{1}} \times \mathfrak{S}_{C_{2}} \times \ldots \mathfrak{S}_{C_{k}} \\
\kappa_{t} & =\sum_{\sigma \in C_{t}} \operatorname{sgn}(\sigma) \sigma .
\end{aligned}
$$

The polytabloid associated to t is $e_{t}=\kappa_{t} \bar{t}$.
If $t=\begin{array}{lll}1 & 2 & 3 \\ 4 & \text {, then } \kappa_{t}=(1)-(12) \text { and }\end{array}$

$$
e_{t}=\begin{array}{lll}
\hline 1 & 2 & 3 \\
\hline 4 & & \begin{array}{lll}
\hline 4 & 2 & 3 \\
\hline 1 & &
\end{array} . . \begin{array}{ll}
\\
\hline
\end{array} \\
\hline
\end{array}
$$

Specht Module

The Specht module S^{λ} corresponding to a partition $\lambda \vdash n$ is the \mathfrak{S}_{n}-module spanned by the polytabloids e_{t}, where t is of shape λ.

Specht Module

The Specht module S^{λ} corresponding to a partition $\lambda \vdash n$ is the \mathfrak{S}_{n}-module spanned by the polytabloids e_{t}, where t is of shape λ.

A Young tableau is standard if rows and columns are increasing sequences. A Specht module is irreducible, and the set $\left\{e_{t} \mid t\right.$ is a standard tableau of shape $\left.\lambda\right\}$ is a basis for S^{λ}.

Specht Module

The Specht module S^{λ} corresponding to a partition $\lambda \vdash n$ is the \mathfrak{S}_{n}-module spanned by the polytabloids e_{t}, where t is of shape λ.

A Young tableau is standard if rows and columns are increasing sequences. A Specht module is irreducible, and the set $\left\{e_{t} \mid t\right.$ is a standard tableau of shape $\left.\lambda\right\}$ is a basis for S^{λ}.

If f^{λ} is the number of standard tableaux of shape λ, Specht proved in 1935 that $\operatorname{dim} S^{\lambda}=f^{\lambda}$, and

$$
\mathbb{R} \mathfrak{S}_{n} \cong \bigoplus_{\lambda \vdash n} f^{\lambda} S^{\lambda}
$$

Double Coset Representatives

Consider a Coxeter system (W, S).

Double Coset Representatives

Consider a Coxeter system (W, S).
For $J \subseteq S$, denote W_{J} the subgroup $\langle J\rangle$ of W.

Double Coset Representatives

Consider a Coxeter system (W, S).
For $J \subseteq S$, denote W_{J} the subgroup $\langle J\rangle$ of W.
For $J, K \subseteq S$, and $w \in W$, the $\left(W_{J}, W_{K}\right)$-double coset of w is the set

$$
W_{J} w W_{K}:=\left\{u w v \mid u \in W_{J}, v \in W_{K}\right\}
$$

The set of all double cosets is denoted $W_{J} \backslash W / W_{K}$.

Double Coset Representatives

Consider a Coxeter system (W, S).
For $J \subseteq S$, denote W_{J} the subgroup $\langle J\rangle$ of W.
For $J, K \subseteq S$, and $w \in W$, the $\left(W_{J}, W_{K}\right)$-double coset of w is the set

$$
W_{J} w W_{K}:=\left\{u w v \mid u \in W_{J}, v \in W_{K}\right\}
$$

The set of all double cosets is denoted $W_{J} \backslash W / W_{K}$.
Let ${ }^{J} W^{K}$ be a set of representatives of the double cosets in $W_{J} \backslash W / W_{K}$. If $J=\varnothing$, we just write W^{K}.

Descent Algebra

For $J \subseteq S$, let

$$
x_{J}=\sum_{w \in W^{J}} w
$$

Descent Algebra

For $J \subseteq S$, let

$$
x_{J}=\sum_{w \in W^{J}} w
$$

For $J, K \subseteq S$, we have

$$
\begin{gathered}
x_{J} x_{K}=\sum_{L \subseteq K} a_{J K L} x_{L} \\
\text { with } a_{J K L}=\#\left\{w \in{ }^{J} W^{K} \mid w^{-1} W_{J} w \cap W_{K}=W_{L}\right\} .
\end{gathered}
$$

Descent Algebra

For $J \subseteq S$, let

$$
x_{J}=\sum_{w \in W^{J}} w
$$

For $J, K \subseteq S$, we have

$$
x_{J} x_{K}=\sum_{L \subseteq K} a_{J K L} x_{L}
$$

$$
\text { with } a_{J K L}=\#\left\{w \in{ }^{J} W^{K} \mid w^{-1} W_{J} w \cap W_{K}=W_{L}\right\}
$$

The descent algebra of a Coxeter system (W, S), defined in 1976 by Solomon, is the subalgebra $\mathrm{D}_{W}:=\mathbb{R}\left[x_{J} \mid J \subseteq S\right]$ of the $\mathbb{R}[W]$.

Unterstützt von / Supported by

Alexander von Humboldt
Stiftung/Foundation

Descent Algebra Spectrum

The total order \succ on $S=\left\{s_{i}\right\}_{i \in[n]}$, introduced in 1992 by Bergeron and Bergeron, is defined as follows: Write $\min J=\min \left\{i \in[n] \mid s_{i} \in J\right\}$ and assume $\min \varnothing=n+1$. Let $J, K \subseteq S$ such that $J \neq K$:

- if $\min J>\min K$ then $J \succ K$,
- otherwise $J \succ K$ if and only if $J \backslash\left\{s_{\min } J\right\} \succ K \backslash\left\{s_{\min K} K\right.$.

Descent Algebra Spectrum

The total order \succ on $S=\left\{s_{i}\right\}_{i \in[n]}$, introduced in 1992 by Bergeron and Bergeron, is defined as follows: Write $\min J=\min \left\{i \in[n] \mid s_{i} \in J\right\}$ and assume $\min \varnothing=n+1$. Let $J, K \subseteq S$ such that $J \neq K$:

- if $\min J>\min K$ then $J \succ K$,
- otherwise $J \succ K$ if and only if $J \backslash\left\{s_{\min J}\right\} \succ K \backslash\left\{s_{\min } K\right\}$.

If $S=\left\{s_{1}, s_{2}\right\}$, then $\left\{s_{2}\right\} \succ\left\{s_{1}\right\} \succ\left\{s_{1}, s_{2}\right\}$.

Descent Algebra Spectrum

The total order \succ on $S=\left\{s_{i}\right\}_{i \in[n]}$, introduced in 1992 by Bergeron and Bergeron, is defined as follows: Write $\min J=\min \left\{i \in[n] \mid s_{i} \in J\right\}$ and assume $\min \varnothing=n+1$. Let $J, K \subseteq S$ such that $J \neq K$:

- if $\min J>\min K$ then $J \succ K$,
- otherwise $J \succ K$ if and only if $J \backslash\left\{s_{\min J}\right\} \succ K \backslash\left\{s_{\min } K\right\}$.

If $S=\left\{s_{1}, s_{2}\right\}$, then $\left\{s_{2}\right\} \succ\left\{s_{1}\right\} \succ\left\{s_{1}, s_{2}\right\}$.
Use the ordered basis $\left(x_{L_{i}}\right)_{i \in 2^{n}}$ of D_{W} such that $L_{i} \succ L_{j}$ if $i<j$.
If $d=\sum_{i \in 2^{n}} \lambda_{L_{i}} x_{L_{i}} \in \mathrm{D}_{W}$, then $\mathscr{X}_{\mathrm{D}_{W}}(d)$ is an upper triangle. Hence

$$
\operatorname{Sp} \mathscr{X}_{\mathrm{D}_{W}}(d)=\left\{\sum_{J \subseteq S} \lambda_{J} a_{J K K}\right\}_{K \subseteq S}
$$

Descent Algebra Representation

For $J=\left\{s_{i_{1}}, \ldots, s_{i_{p}}\right\}$ with $i_{1}<\cdots<i_{p}$, let $c_{J}=s_{i_{1}} \ldots s_{i_{p}}$ and \tilde{c}_{J} be the conjugacy class of c_{J}.

Descent Algebra Representation

For $J=\left\{s_{i_{1}}, \ldots, s_{i_{p}}\right\}$ with $i_{1}<\cdots<i_{p}$, let $c_{J}=s_{i_{1}} \ldots s_{i_{p}}$ and \tilde{c}_{J} be the conjugacy class of c_{J}.

We prove in 2012 that

$$
\begin{aligned}
& \operatorname{Sp} \mathscr{X}_{\mathbb{R}[W]}(d)=\operatorname{Sp} \mathscr{X}_{\mathrm{D}_{W}}(d), \\
& \text { and the multiplicity of } \sum_{J \subseteq S} \lambda_{J} a_{J K K} \text { is } \# \tilde{c}_{K} .
\end{aligned}
$$

Group Characters

The character of a representation \mathscr{X}_{V} of a group G is the function

$$
\chi_{v}: G \rightarrow \mathbb{K}, \quad g \mapsto \operatorname{tr} \mathscr{X}_{V}(g)
$$

Group Characters

The character of a representation \mathscr{X}_{V} of a group G is the function

$$
\chi v: G \rightarrow \mathbb{K}, \quad g \mapsto \operatorname{tr} \mathscr{X}_{V}(g)
$$

It is said to be irreducible if \mathscr{X}_{v} is irreducible.

Group Characters

The character of a representation \mathscr{X}_{V} of a group G is the function

$$
\chi_{v}: G \rightarrow \mathbb{K}, \quad g \mapsto \operatorname{tr} \mathscr{X}_{V}(g)
$$

It is said to be irreducible if \mathscr{X}_{V} is irreducible.
It has a constant value χ_{V}^{C} on each conjugacy class C of G.

Group Characters

The character of a representation \mathscr{X}_{V} of a group G is the function

$$
\chi_{v}: G \rightarrow \mathbb{K}, \quad g \mapsto \operatorname{tr} \mathscr{X}_{V}(g)
$$

It is said to be irreducible if \mathscr{X}_{v} is irreducible.
It has a constant value χ_{V}^{C} on each conjugacy class C of G.
The character table of a group G is an array with rows indexed by the inequivalent irreducible G-modules V and columns indexed by the conjugacy classes C of G, and whose entry in row V and column C is χ_{V}^{C}.

Group Characters

The conjugacy classes of \mathfrak{S}_{3} are

$$
C_{1}=\{(1)\}, C_{2}=\{(12),(13),(23)\}, C_{3}=\{(123),(132)\}
$$

Group Characters

The conjugacy classes of \mathfrak{S}_{3} are

$$
C_{1}=\{(1)\}, C_{2}=\{(12),(13),(23)\}, C_{3}=\{(123),(132)\} .
$$

The irreducible Specht modules of \mathfrak{S}_{3} are

- $S^{(3)}$ generated by $\begin{aligned} & 1 \quad 2 \quad 3 \\ & -\end{aligned}$
- $S^{(1,1,1)}$ by $\sum_{\sigma \in \mathfrak{S}_{3}} \operatorname{sgn}(\sigma) \sigma \frac{\overline{1}}{\frac{2}{3}}$,
- $S^{(2,1)}$ by $\frac{\overline{2} 3}{\frac{1}{2}}-\frac{\overline{1 \quad 3}}{2}$ and $\frac{\overline{2} 3}{1}-\frac{\overline{1 \quad 2}}{3}$.

Group Characters

The character table of \mathfrak{S}_{3} is

	C_{1}	C_{2}	C_{3}
$S^{(3)}$	1	1	1
$S^{(1,1,1)}$	1	-1	1
$S^{(2,1)}$	2	0	-1

Group Characters

The character table of \mathfrak{S}_{3} is

	C_{1}	C_{2}	C_{3}
$S^{(3)}$	1	1	1
$S^{(1,1,1)}$	1	-1	1
$S^{(2,1)}$	2	0	-1

The character of a representation \mathscr{X}_{V} of an algebra A over \mathbb{K} is the function

$$
\chi_{V}: A \rightarrow \mathbb{K}, \quad a \mapsto \operatorname{tr} \mathscr{X}_{V}(a) .
$$

Hecke Algebra

Consider a Coxeter system (W, S) with Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.

Hecke Algebra

Consider a Coxeter system (W, S) with Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.
Let $B=\left\{a_{s}, b_{s} \mid s \in S\right\}$ be a set of variables such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ whenever $s, t \in S$ are conjugate in W.

Hecke Algebra

Consider a Coxeter system (W, S) with Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.
Let $B=\left\{a_{s}, b_{s} \mid s \in S\right\}$ be a set of variables such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ whenever $s, t \in S$ are conjugate in W.

The Hecke algebra H_{W} associated to W is the associative algebra over the ring $\mathbb{R}[B]$ generated by $\left\{T_{s}\right\}_{s \in S}$ subject to the relations

$$
\begin{aligned}
& \forall s \in S, T_{s}^{2}=a_{s}+b_{s} T_{s}, \\
& \forall s, t \in S, s \neq t, \overbrace{T_{s} T_{t} T_{s} \ldots}^{m_{s t} \text { times }}=\overbrace{T_{t} T_{s} T_{t} \ldots .}^{m_{s t}^{\text {times }}}
\end{aligned}
$$

Hecke Algebra

Consider a Coxeter system (W, S) with Coxeter matrix $\left(m_{s t}\right)_{s, t \in S}$.
Let $B=\left\{a_{s}, b_{s} \mid s \in S\right\}$ be a set of variables such that $a_{s}=a_{t}$ and $b_{s}=b_{t}$ whenever $s, t \in S$ are conjugate in W.

The Hecke algebra H_{W} associated to W is the associative algebra over the ring $\mathbb{R}[B]$ generated by $\left\{T_{s}\right\}_{s \in S}$ subject to the relations

$$
\begin{aligned}
& \forall s \in S, T_{s}^{2}=a_{s}+b_{s} T_{s}, \\
& \forall s, t \in S, s \neq t, \overbrace{T_{s} T_{t} T_{s} \ldots}^{m_{s t} \text { times }}=\overbrace{T_{t} T_{s} T_{t} \ldots .}^{m_{s t}^{\text {times }}}
\end{aligned}
$$

If $w=s_{1} \ldots s_{n}$ with $s_{i} \in S$, define $T_{w}=T_{s_{1}} \ldots T_{s_{n}}$.

Skew Diagram

Let $n, k \in \mathbb{N}$ such that $n \geq k$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$, $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right) \vdash k$ such that $\lambda_{i} \geq \mu_{i}$. The skew diagram of shape $\lambda-\mu$ is the diagram formed by the dots of the Ferrers diagram of shape λ but not that of μ.

Skew Diagram

Let $n, k \in \mathbb{N}$ such that $n \geq k$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I}\right) \vdash n$, $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right) \vdash k$ such that $\lambda_{i} \geq \mu_{i}$. The skew diagram of shape $\lambda-\mu$ is the diagram formed by the dots of the Ferrers diagram of shape λ but not that of μ.

The skew diagram of shape $\lambda-\mu$ is a strip if it does not contain any 2×2 dots.

Skew Diagram

Let $n, k \in \mathbb{N}$ such that $n \geq k$, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right) \vdash n$, $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right) \vdash k$ such that $\lambda_{i} \geq \mu_{i}$. The skew diagram of shape $\lambda-\mu$ is the diagram formed by the dots of the Ferrers diagram of shape λ but not that of μ.

The skew diagram of shape $\lambda-\mu$ is a strip if it does not contain any 2×2 dots.

Denote $c c_{\mu}^{\lambda}$ the number of connected components of $\lambda-\mu$.
Denote I_{μ}^{λ} the number of rows covered by $\lambda-\mu$ minus $c c_{\mu}^{\lambda}$.

Character of Hecke Algebra of Type A

Consider the Hecke algebra $\mathrm{H}_{\mathfrak{S}_{n}}$ with parameters $a_{s}=u$ and $b_{s}=u-1$.

Character of Hecke Algebra of Type A

Consider the Hecke algebra $\mathrm{H}_{\mathfrak{S}_{n}}$ with parameters $a_{s}=u$ and $b_{s}=u-1$.
Let $\lambda \vdash n, k \in[n]$, and $w \in \mathfrak{S}_{n}$ such that

$$
w=w^{\prime}(n-k+1 n-k+2) \ldots(n-1 n)
$$

for some $w^{\prime} \in \mathfrak{S}_{n-k}$. Then

$$
\chi_{S^{\lambda}}\left(T_{w}\right)=\sum_{\mu \subseteq \lambda}(u-1)^{c c_{\mu}^{\lambda}-1}(-1)^{\lambda_{\mu}^{\lambda}} u^{k-l_{\mu}^{\lambda}-c c_{\mu}^{\lambda}} \chi_{S^{\mu}}\left(T_{w^{\prime}}\right)
$$

where $\mu \vdash n-k$ such that $\lambda-\mu$ is a strip.

Some Applications

Let G, H be groups. Formanek and Sibley proved in 1991 that

$$
\Theta(G)=\Theta(H) \Longleftrightarrow G \cong H .
$$

Some Applications

Let G, H be groups. Formanek and Sibley proved in 1991 that

$$
\Theta(G)=\Theta(H) \Longleftrightarrow G \cong H .
$$

If two groups have different character tables, then they are not isomorphic.

Some Applications

Let G, H be groups. Formanek and Sibley proved in 1991 that

$$
\Theta(G)=\Theta(H) \Longleftrightarrow G \cong H
$$

If two groups have different character tables, then they are not isomorphic.
Jones constructed a polynomial invariant for oriented links in knot theory through characters of Hecke algebras of type A with parameters $a_{s}=u$ and $b_{s}=u-1$ in 1987, and Geck and Lambropoulou that polynomial through characters of Hecke algebras of type B in 1997.

Complex Reflection Groups

Endow \mathbb{C}^{n} with the usual unitary inner product $\langle\cdot, \cdot\rangle: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. A complex reflection $s_{u, \xi}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ across the hyperplane u^{\perp} in \mathbb{C}^{n} is defined by $s_{u, \xi}(x):=x-(1-\xi) \frac{\langle x, u\rangle}{\langle u, u\rangle} u$. A complex reflection group is a finite group generated by complex reflections.

Complex Reflection Groups

Endow \mathbb{C}^{n} with the usual unitary inner product $\langle\cdot,\rangle:. \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. A complex reflection $s_{u, \xi}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ across the hyperplane u^{\perp} in \mathbb{C}^{n} is defined by $s_{u, \xi}(x):=x-(1-\xi) \frac{\langle x, u\rangle}{\langle u, u\rangle} u$. A complex reflection group is a finite group generated by complex reflections.

Some open problems:

- irreducible representations of complex reflection groups,

Complex Reflection Groups

Endow \mathbb{C}^{n} with the usual unitary inner product $\langle\cdot,\rangle:. \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. A complex reflection $s_{u, \xi}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ across the hyperplane u^{\perp} in \mathbb{C}^{n} is defined by $s_{u, \xi}(x):=x-(1-\xi) \frac{\langle x, u\rangle}{\langle u, u\rangle} u$. A complex reflection group is a finite group generated by complex reflections.

Some open problems:

- irreducible representations of complex reflection groups,
- existence and representation of complex descent algebras,

Complex Reflection Groups

Endow \mathbb{C}^{n} with the usual unitary inner product $\langle\cdot,\rangle:. \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$. A complex reflection $s_{u, \xi}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ across the hyperplane u^{\perp} in \mathbb{C}^{n} is defined by $s_{u, \xi}(x):=x-(1-\xi) \frac{\langle x, u\rangle}{\langle u, u\rangle} u$. A complex reflection group is a finite group generated by complex reflections.

Some open problems:

- irreducible representations of complex reflection groups,
- existence and representation of complex descent algebras,
- existence and character of complex Hecke algebras.

Bibliography

婳 K. Conrad, The Origin of Representation Theory, (2010).
H. Coxeter, Discrete Groups generated by Reflections, Ann. of Math. (2) (35) 3 (1934), 588-621.
E. Formanek, D. Sibley, The Group Determinant determines the Group, Pror. Amer. Math. Soc. (112) 3 (1991), 649-656.
M. Geck, S. Lambropoulou, Markov Traces and Knot Invariants related to Iwahori-Hecke Algebras of Type B, J. Reine Angew. Math. (482) (1997), 191-213.

圊 M. Geck, G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Math. Soc. Monogr. (N.S.) (21) (2000).

Bibliography

固 V. Jones, Hecke Algebra Representations of Braid Groups and Link Polynomials, Ann. of Math. (2) (126) 2 (1987), 335-388.
围 H. Randriamaro, Spectral Properties of Descent Algebra Elements, J. Algebraic Combin. (39) (2014), 127-139.
B. Sagan, The Symmetric Group Representations, Combinatorial Algorithms, and Symmetric Functions, Grad. Texts in Math. 203, 2001.
L. Solomon, A Mackey Formula in the Group Ring of a Coxeter Group, J. Algebra (41) (1976), 255-268.
(W. Specht, Die irreduziblen Darstellungen der symmetrischen Gruppe, Math. Z. (39) 1 (1935), 696-711.

Danke für Ihre Aufmerksamkeit!

